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ARGUMENT

We introduce the notion of numerical functors to generalise Eilenberg & Mac Lane’s
polynomial functors to arbitrary base rings. After shewing how these functors are
encoded by modules over a certain ring, a characterisation of analytic functors is
given. The article culminates in the Polynomial Functor Theorem, recording a pre-
cise criterion for a numerical (or polynomial) functor to admit a strict polynomial
structure in the sense of Friedlander & Suslin.
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When is a polynomial functor strict polynomial? The question seems rather a funda-
mental and natural one; and, considering the ubiquity of polynomial functors,
it will perhaps be deemed a bit surprising that nobody, as of yet, has deemed
it worthy of an examination. Providing an answer, as satisfactory as one could
ever hope for, is the purpose of the present note.

It will be recalled that polynomial functors were invented by Eilenberg &
Mac Lane ([2]) in 1954, and strict polynomial functors by Friedlander & Suslin
([4]) in 1997 (precise definitions will follow below). As evinced by termino-
logy, the notion of polynomial functor is weaker than that of strict polynomial
functor. It will naturally be enquired: how much weaker?
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Let us recapitulate what is known of polynomial versus strict polynomi-
al functors. For affine functors, degree o and 1, there will be no discernible
difference between polynomial and strict polynomial functors, but they will
perfectly agree. This will no longer be the case in higher degrees, as there exist
polynomial functors which do not admit a strict polynomial structure. Worse,
even when such a structure exists, it will usually not be unique. Example 1
below dissects a curious functor which admits several strict polynomial struc-
tures, even of different degrees.

Quaderatic functors turn out to present an intermediate case, exhibiting
some atypical phenomena. Example 7 dwells on this point, establishing that
a quadratic integral functor F is homogeneous of degree 2 if and only if it
satisfies the equation

F(ra) = r*F(a),
for any » € Q and homomorphism a. In our terminology, F should be guasi-
homogeneous of degree 2 (Definition 11). Beware, however, that a quadratic
functor which is not quasi-homogeneous need not arise from a strict polyno-
mial functor.

Not only will a quasi-homogeneous, quadratic functor admit a homogene-
ous structure; it will admit a unique such. This is singular indeed, and far from
the situation in higher degrees, where there is reason to expect neither exist-
ence nor uniqueness of a strict polynomial structure, even on a functor which
is a priori quasi-homogeneous.

Polynomial functors were initially conceived for abelian groups. While the
notion, as such, is perfectly sensible for modules over any ring, it will clearly
be deficient, as scalar multiplication is nowhere taken into account. As a
remedy, we introduce the notion of numerical functors (Definition 10), designed
to make sense for any binomial (or numerical) base ring. We explore their
elementary properties, examine analytic functors (Definition 12) in some detail,
and then exhibit a projective generator for the category of numerical functors,
which will is found to be Morita equivalent to the category of modules over
the augmentation algebra B[B"*"],, B betokening the base ring (Theorem 15).
Morally, all theorems valid for (integral) polynomial functors will remain
valid, mutatis mutandis, for numerical functors.

True homogeneous (strict polynomial) functors, on the other hand, are
encoded by modules over the Schur algebra T (B**") (Theorem 5). These two
rings are linked by the divided power map

Yo B[ann]n N Fn(ann), [0] N G[n];

which, by restriction of scalars, gives rise to a functor $om, — 9um, from
homogeneous to numerical functors. Asserts Theorem 22 below:

TueoreM. — The divided power map
’Yn: B[ann]n Hrﬂ(BﬂXﬂ)

begets the forgetful functor
Hom,, — JNum,,.
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The reader will note carefully that the divided power map is not surjective,
or even an epimorphism of rings, except in degrees o, 1 and 2. This accounts
for the anomalous behaviour of low-degree functors, as explained above.

After shewing how quasi-homogeneous functors, as B[B”*”],,-modules, cor-
respond to Imy,-modules, we construct a section of the divided power map
(Theorem 19):

g, T"(B”") —> Q ®z B[B"*"],.

The grand dénouement will be the Polynomial Functor Theorem, Theorem 23
below:

THEOREM. — Let F be a quasi-homogeneous functor of degree n, corresponding to the
B[B"*"|,,-module M and the Im y,-module N. The following constructs are equivalent:

A. Imposing the structure of homogeneous functor, of degree n, upon F.
B. Giving M the structure of Im €,-module.

C. Giving N the structure of I (B"*")-module.

This research was carried out at Stockholm University under the emin-
ent supervision of Prof. Torsten Ekedahl. We thank Dr Christine Vespa for
innumerous and invaluable comments on the manuscript.

§0. PorLynomiaL AND StricT PoLyNoMIAL FUNCTORS

For the entirety of this article, B shall denote a fixed base ring of scalars,
assumed to be binomial* in the sense of Hall ([5]); that is, commutative, unital,
and in the possession of binomial coéfhicients. Examples include the ring of
integers, as well as all Q-algebras.

All modules, homomorphisms, and tensor products shall be taken over
this B, unless otherwise stated. We let Mod = gMod denote the category of
(unital) modules over this ring.

Let X900 be the category” of those modules that are finitely generated and
free. A module functor is a functor

X900 — Mod

— and, so as to avoid any misunderstandings, we duly emphasise that linearity
will ot be assumed.

We shall be wholly content to consider such restricted functors exclusively.
Not only is this following tradition, but a functor defined on the subcategory

'This is a numerical ring in the terminology [3] of Ekedahl. For the equivalence of the two
notions, a proof is offered in [g].
>The letter X herein is intended to suggest “eXtra nice modules”.
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XMod always has a canonical well-behaved extension to the whole module
category Mod, as we presently expand upon.

First, let us recall what it means for a functor, not necessarily additive, to
be right-exact in the sense of Bouc [1].

DerintTioN 1. — A functor F betwixt abelian categories is right-exact if for
any exact sequence

A—2-B P C o,
the associated sequence
F(o+1p)
—F F
FA®B) — _ r3) L% Fo) o
is also exact. o

This definition agrees with the usual one in the case of an additive functor.
In fact, the usual definition actually implies additivity of the functor, which
renders it useless for our purposes.

TueoreM 1 ([1], TueoreM 2.14). — Any functor X9Mod — IMod has a unique ex-
tension to a functor Mod — Mod which is right-exact and commutes with inductive
limits.

No serious imposition shall thus result from considering only the said
restricted functors XMod — Moo, as will be done henceforth.

Let us now bring to mind the classical notions of polynomiality. The sub-
sequent definitions made their first appearance in print, albeit somewhat im-
plicitly, in Eilenberg & Mac Lane’s monumental article [2], sections 8 and o:

DeriNtTION 2. — Let ¢: M — N be a map of modules. The nth deviation of ¢
is the map
QX 0+ O Xpyr) = Z (_I)nJrIil]l(P <Z xi)
Ic[n+1] el
of n + 1 variables. o

DerinitioN 3. — The map ¢: M — N is polynomial of degree » if its nth
deviation vanishes:

O(x; 0 -0 Xyry) =0

for any x;, ..., x4 € M. o

DerintrioN 4. — The functor F: X9od — Moo is said to be polynomial of
degree (at most) 7 if every arrow map

F: Hom(M,N) — Hom(F(M),F(N))

1s. o
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We now recall the strict polynomial maps (“lois polynomes”) from the
work of Roby and the strict polynomial functors introduced by Friedlander
and Suslin. The base ring B may here be taken commutative and unital only.

DEerINITION 5 ([7], sEcTION 1.2). — A strict polynomial map is a natural trans-
formation
MR —-——>NR—

betwixt functors €Alg — Set, where €Alg = gC€Alg designates the category of
commutative, unital algebras over the ring B, and Get denotes the category of
sets. 3

Strict polynomial maps decompose as the direct sum of their homogeneous
components ([7], Proposition I.4).

DerInITION 6 ([4], DEFINITION 2.1). — The functor F: X000 — Mo is said to
be strict polynomial of degree 7 if the arrow maps

F: Hom(M,N) - Hom(F(M),F(N))
have been given a (multiplicative) strict polynomial structure. o

The following (slightly paraphrased) result is taken from Salomonsson’s
investigations of strict polynomial functors, stated merely for the purpose of
later comparison with the numerical case.

TueoreMm 2 ([8], Proprositions 2.3, 2.5). — Consider the following constructs, where
A ranges over all commutative, unital algebras:

A. A family of ordinary functors Eg: 4 X900 — 4900, commuting with extension
of scalars.

B. A functor J: XIMod — Mod with arrow maps
Ja: Homa(A®@M,A®N) — Homs(A®J(M),A ®](N)),
multiplicative and natural in A.
C. A functor F: X0Mod — 9Mod with arrow maps
Fp: A®Homg(M,N) — A ® Homg(F(M),F(N)),
multiplicative and natural in A (the definition of strict polynomial functor).

Constructs A and B are equivalent, but weaker than C. If, in addition, the arrow maps
are presumed to be strict polynomial of some (uniformly) bounded degree, all three are
equivalent.

We thus obtain the following hierarchy of functors.

e Strict polynomial functors, as defined previously, have bounded degree and
satisfy all three conditions A, B and C.
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e A functor satisfying condition C, but with no assumption on the degree,
will be called locally strict polynomial.

e A functor satisfying the weaker conditions A and B, again without any
assumption on the degree, will be called strict analytic.

We have found no explicit reference for the subsequent illation, but we
daresay it is rather well known. It is intended to be contrasted with Theorem
11 below.

TueoreM 3. — The strict analytic functors are precisely the direct sums (o7, equival-
ently, inductive limits) of strict polynomaial functors.

We remark that, comparable to the situation for maps, strict polynomial func-
tors are not determined by their underlying functors. The strict structure constitutes
auxiliary data, which may be supplied in more than one way (or possibly none
at all). The example below should serve as a warning.

ExampLE 1. — Let B = Z, let A be a commutative Z-algebra, and let p be a
prime. The ring A/pA is a bimodule over Z in the usual way. Keeping the left
module structure, equip it with another right module structure, mediated by
the Frobenius map:

(x 4+ pA) - a = a'x + pA.

That this is a module action is a consequence of Fermat’s Little Theorem. Let
(A/pA)® denote the bimodule thus obtained.
Define, for any commutative algebra A, the functors
Fq: X900 — 4900
M ApA@M

and

Gy AX9M00 — 400
M~ (A/pA)D @ M.
These functors commute with scalar extensions; hence they give strict analytic
functors.
Let a: M — N be a homomorphism of A-modules, and let « € A. As a

homomorphism
A/pPA@M — A/pA® N,

we have
Fyp(an) =1®a0 =a® o = aFy(a),

which shews F is homogeneous of degree 1. As a homomorphism

(A/pA)Y @M — (A/pA)Y ® N,
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we have
Galaa) =1®a0 =& @ o= a’ Gy (a),

which shews G is homogeneous of degree p.
None the less, when regarded as functors only, F and G are both linear, and,
as it so were, isomorphic. This is again because of Fermat’s Little Theorem:

(x+pZ)-a=d'x+pL = ax + pZ,

and consequently
(2/p2)"V = Z/pZ
as Z-bimodules. A

DeriniTiON 7. — By a natural transformation n: F — G of strict polynomial
functors, we mean a family of homomorphisms

0= (s F(M) — G(M) | M < Xod),

such that for any modules M and N, any algebra A, and any
o€ A®Hom(M,N),

the following diagram commutes:

AQFM) "2V 4 @ G(M)

F(m)l \LG(&)

AQF(N) 5> A®G(N)

We shall denote by
GPol,

the abelian category of strict polynomial functors of degree 7.
Next, rather than considering arbitrary strict polynomial functors, we
shall usually limit our attention to homogeneous ones.

DeriNtTion 8. — The functor F: X900 — Mod is said to be homogeneous of
degree n if the arrow maps

F: Hom(M,N) — Hom(F(M),F(N))
have been given a (multiplicative) homogeneous structure. o
The abelian category of homogeneous functors will be denoted by
Hom,,.

By virtue of the following familiar theorem, nothing essential will be lost by
considering homogeneous functors only.
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THEOREM 4. — A strict polynomial functor decomposes as a unigue direct sum of homo-
geneous functors. The only possible natural transformation berween homogeneous func-
tors of different degrees is the zero transformation. Consequently,

SPol,, = P Homy.
k=0

The next theorem was proved by Friedlander & Suslin for finite fields, but
does not seem to have been corroborated in full generality until the work of
Salomonsson.

TueoreM 5 ([8], ProposITION 2.4). — The fundamental homogeneous functor
" Hom(B”, —)
is a small projective generator for $Hom,,, through which there is a Morita equivalence
Homy, ~ pn (grxny Mo0,

where T (B"*") carries the product multiplication ol « "l = (ap)*],
More precisely, the functor F corresponds to the abelian group F(B"), with module
structure given by the equation

" x = F(r)(x).

Let us finally evoke the notion of numerical map, which will be fundamental
for the perusal to follow.

DEerintTioN 9 ([10], Derinition 5). — The map ¢: M — N is numerical of
degree (at most) 7 if it satisfies the following two equations:

(P(XIO"'OanrI):O, Xiy -y Xny1 € M
(p(rx)zé)(é)(p((gx), reB, xe M.

<o

TueoreM 6 ([10], THEOREM 10). — The map ¢: M — N is numerical of degree n if
and only if it can be extended to a degree n natural transformation

¢o: M®p — - NQp —

of functors NAlg — Get, where NAlg = gNAlg denotes the category of numerical
algebras over the ring B.
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§1. NumericaL Funcrors

We proffer the following definition extending Eilenberg and Mac Lane’s poly-
nomial functors to more general rings.

DerinitioN 10. — The functor F: X90d — Mod is said to be numerical of
degree (at most) 7 if every arrow map

F: Hom(M,N) — Hom(F(M),F(N))
1s. o

Over the integers, the notions of polynomial and numerical functor may be
equated, for then all polynomial maps are numerical. Every strict polynomial
functor is numerical, and if the base ring B be a Q-algebra, the two strains
coincide. These assertions are consequences of the corresponding statements
for maps. Confer the remarks succeeding Definition 5 in [10].

ExamrLE 2. — A functor is numerical of degree o if and only if it is con-
stant. A
ExampLE 3. — A functor is numerical of degree 1 if and only if it is affine; id
est, the translate of a linear functor. A
ExampLe 4. — Most notorious of the polynomial functors are no doubt the

classical algebraic functors: the tensor power T”, the symmetric power S”, the
exterior power A", and the divided power T”. Of course, since the arrow maps of
these functors are not only numerical, but homogeneous (strict polynomial)
of degree n, they are in fact homogeneous of degree 7. A

It should be borne in mind the fundamental difference between the two
types of functors — numerical and strict polynomial — which is constantly
at play. While numerical functors do sanction an interpretation as functors
equipped with extra data (Theorem 6), exactly corresponding to how strict
polynomial functors have been defined; this auxiliary structure is, in fact, an
extravagance, and may be omitted at will. Fundamentally, they are ordinary
functors satisfying certain equations, as just defined; hence, a fortiori, a numer-
ical functor is uniquely determined by its underlying functor. This is not true
for strict polynomial functors, as was pointed out above.?

Denote the category of numerical functors of degree n by

Num,,.

By simple algebraical considerations, it may be verified to be abelian (the case
B = Z is well known), and it is moreover closed under direct sums. We shall
presently see that it possesses a small projective generator.

3The failure occurs already at the level of maps; confer Example 7 of [10].
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DeriNiTiON 11. — The numerical functor F is quasi-homogeneous of degree n
if the extension functor4

F: Q®z XMo0 — Q ®z Moo

satisfies the equation
F(ra) = r""F(a),

for any » € Q ®z B and homomorphism o. o

Being quasi-homogeneous is a necessary condition for a functor to admit
a (strict polynomial) homogeneous structure. We shall later give a sufficient
condition.
The category of quasi-homogeneous functors of degree » will be denoted
by the symbol
NHom,,.

§2. Tue HierarRcHY OF NUMERICAL FUNCTORS

In this section, we proceed to discuss locally numerical and analytic functors.
We say that a map ¢, or a family of such, is multiplicative if

o(2)o(w) = o(zw),
whenever z and w are entities such that the equation makes sense, and also
o(1) =1,

where the symbol 1 is to be interpreted in a natural way (usually differently on
each side). An ordinary functor is the prime example of such a multiplicative
family.

The following theorem should be compared with Theorem 2 above.

Tueorem 7. — Consider the following constructs, where A ranges over all numerical
algebras:

A. A family of ordinary functors E4 : 4 X900 — 49MN0d, commuting with extension
of scalars.

B. A functor J: XMod — Mod with arrow maps
Ja: Homy(A®@M,A®N) — Homy(A®J(M),A®](N)),
multiplicative and natural in A.
C. A functor F: X900 — 9M0d with arrow maps
Fy: AQ Homp(M,N) - A ® Homg(F(M), F(N)),

multiplicative and natural in A (the definition of numerical functor).

4It will be recalled that binomial rings are torsion-free.

I0
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Constructs A and B are equivalent, but weaker than C. If, in addition, the arrow maps
are presumed to be numerical of some (uniformly) bounded degree, all three are equival-
ent.

Proof. Given E, define J by
J(M) = Ep(M)

and the diagram:

Hom, (A ® M,A ® N) —> Hom (E4(A ® M), E(A ® N))

Homy (A ® Eg(M),A ® Eg(N))
Conversely, given ], define the functors E by the equations
Eq(M) = A®](M)

and
Hom, (A ® M, A ® N) ——- Hom, (4 ® J(M),A ® J(N)).

Also, it is easy to define J from F; simply let
J(M) = E(M),
and use the following diagram:

F

A ® Homp (M, N) A ® Homp(F(M),F(N))

| |

Homy(A®M,A®N) - >Homa(A @ F(M),A®F(N))

The left column in the diagram is an isomorphism as long as M and N are free.

The difhicult part is defining F from J, provided that J is indeed of bounded
degree n. The following proof is modelled on the corresponding argument for
strict polynomial functors in [8]. Let M and N be two modules, and let A be
any numerical algebra. Find a free resolution

B®™ B® J(M) o,
and apply the contra-variant, left-exact functor

Homy(A® —,A®]J(N))

II



XANTCHA Polynomial Functors of Modules

to obtain a commutative diagram:

0 —Homy(A®J(M),A®J(N)) ——= (A®J(N))* ——= (A®J(N))*

A
| c

A ® Hom(M,N) A ®B[Hom(M,N)],

The homomorphism

y: A®Hom(M,N) — (A®J(N))*
may be split up into components

(V)e: A®Hom(M,N) — A®J(N),

for each k € k. Those are numerical of degree #, and will factor over 8, via
some linear ;. Together they yield a linear map

§: A@B[Hom(M, N)], — (A®J(N))",

making the above square commute.
Now, 68, = o = o, which gives 6 = o. By the exactness of the upper
row, { factors via some homomorphism

&: BlHom(M, N)], —» Hom(J(M),](N)).

Because
J = {8, = 183,

and 1 is one-to-one, we also have | = 3,,. The following diagram will therefore
commute:

Hom(/(#),](N)) ———J(N)

Hom(M, N) B[Hom(M, N)]»

n

Since J factors over Bl[Hom(M, N)],, it is numerical of degree n, and so may
be used to construct F. O

We thus obtain the following hierarchy of functors.
DEFINITION 12.

¢ Numerical functors have bounded degree and satisfy all three conditions
A, B and C. (This coincides with the previous definition.)

e A functor satisfying condition C, but with no assumption on the degree,
will be called locally numerical.

I2
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e A functor satisfying the weaker conditions A and B, again without any
assumption on the degree, will be called analytic.

o

ExampLe 5. — The classical algebraic functors 7, S, A and I are all analytic,
for they evidently satisfy condition A of the theorem.

Of these, only A is locally numerical. This is because, when n > p, the
module

A" (BF) = o,
and hence, for given p and g, the map
A: Hom(B?,B7) — Hom(A(B?),A(BY))

is numerical of degree max(p, q). A

§3. ProPERTIES OF NUMERICAL FUNCTORS

Since numerical functors allow for a more complicated rendition, it ought
not to be surprising that natural transformations also satisfy a more involved
condition. The theorem below exhibits obvious conformity with Definition 7.

THEOREM 8. — Let
n = (u: F(M) — G(M) | M € X0od)

be a natural transformation of numerical functors F and G. For any modules M and N,
any numerical algebra A, and any

o€ A®Hom(M,N),
the following diagram commutes:

AQFM) M A ® G(M)

F(w)l lG(w)

Proof. Consider homomorphisms
Oy 04 M — N.

Assume that

o smsa-(3) - (3)on
n I

3
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Gla,®0; + -+ +ap®oy) :Z (ZI) <ZZ) ® W

v

for any a;, . ..,a; in any numerical algebra A, where we have abbreviated
w=(my,...,m) and v = (ny,...,n).

The naturality of n ensures that

2 (o) G =2 ()= (oo

Specialise first to the case 4, = 4; = --- = 0, to obtain
; (::ZII)nNB(mI,o,...) = ; (Zi)Y(nl,o,‘..)nM-

Successively putting a; = 0,1,2, ... leads to

NNBny,o,...) = Yimmo,... )M
for all m,. Proceeding inductively, one shews that

NNBu = Tunu

for all p. The commutativity of the diagram, for

O=a, @0 + -+ ap® oy,

is then demonstrated by the following instantiation:

b®x b@nu(x)

|

a a, Zu (:;I) T (Zzi)b@@nNBu(x)
n.G) - Gpsoni — | 3 RIS

my

O

Next, we give some equivalent characterisations of numericality, which
may perhaps be more convenient in practice.

TueOREM 9. — The following conditions are equivalent on a polynomial funcror F of
degree n.

A
Fra) = k:Zo <;>F (<k> oc) :

for any scalar v and homomorphism o (the definition of numerical functor).

14



XANTCHA Polynomial Functors of Modules

S o

for any scalar r and homomorphism .

A

for any scalar r.

T e e () Ve,

m=0

for any scalar 7.

Proof. That A and B are equivalent follows from Theorem 7 of [10], as does the
equivalence of A’ and B’. Clearly B implies B/, so there remains to establish
the implication of B by B'.

Hence assume B, and put

() ()

In the case g < », the equation

n

T IBq Z m IBq

clearly holds, because 1gs factors through 1p».
Consider now the case g > n. By induction, assume the formula holds for
g — 1. Letting m; denote the canonical projections, we calculate:

F(r-1gs) = F(rmy + - - + rmy)

=— Z (-7 MIF (Z rnl)
I|q)

el

=— > (-1 I'ZZF(Zmn,
=

)
)

15
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The third and sixth steps are because the gth deviation vanishes. This shews
that the equation holds for 1y, for any ¢.
Finally, in the case of an arbitrary homomorphism a: B? — BY, we have

F(ra) = F(r - 1g¢)F(a)

- Zn: ZnF(m - 1p7)F(a) = Zn] ZnF(mo

and the proof is finished. O

The following very pleasant formula is an immediate consequence of the
corresponding formula for maps.

Recall that a multi-set is a set with repeated elements. When X is a multi-set,
we shall denote by |X]| its cardinality, that is, the number of elements counted
with multiplicity, and by #X the underlying set, called its support.

Tueorem 10. — The module functor F is numerical of degree n if and only if, for any
scalars a; and homomorphisms a, the following equation holds:

Flayo; o -+ - o apay) = (d>F <ro>.
#XZ[k] X/

|X|<n

Proof- Theorem 8 of [10]. O

ExampLE 6. — A cubic functor F is characterised by the following formulea:

Floaoy) = <ﬂ1>F(<>ocI) + (‘;‘)F(m o 0y)

(5
-(;
(
-

+

Flo; o0y 0ay)

(Yo + (4)(%)rtasansa

(“2) Flow o oy 0 00,)

2

(%) (%)re oo ow)

§4. ANAvryTic FUNCTORS

F(ay0; ¢ a,0,)

_l’_

F(ayouy © a0, © az0,)

)
)
)
)

We now examine the analytic functors. Traditionally, analytic functors have
been identified with the inductive limits of polynomial functors. The defini-
tion we gave above is no different, as we now set out to shew.

16
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LemMa 1. — Let F be an analytic functor and P a finitely generated, free module. Sup-
pose u € F(P), and define the subfunctor G by

GM) = {(F(a)(n)|a: P> M).
Consider the natural transformation
&: Hom(P,—) — F,
given by
&v: Hom(P,N) — F(N)
a— F(a)(u).
If &N is numerical of degree n, then so is
G: (M,N) - Hom(G(M), G(N))

forall M. In particular:

o Ifall &y are numerical, then G is locally numerical.

o Ifall En are numerical of uniformly bounded degree, then G is numerical.

Proof- Observe that the modules G(M) are invariant under the action of F.
Thus, G is indeed a subfunctor of F.
Suppose &y is numerical of degree 7. Then, for all homomorphisms

o,a;: P> N

and scalars 7, the following equations hold:
Floy 0 - 0ayq)(#) =0

{F(m)(w) = S (D)F (O ) ()
This implies that, for all homomorphisms
B,B;: M — N, y:P—-M,

and scalars 7, the following equations hold:

{F(& o+ 0 Bupn)Fly) () = 0
E(rB)E(Y)(#) = 250 () (Om B) E(Y) (w).

Hence
F(Byo- 0Bpyy) =0

w3 () ()

m=0

and

on G(M), which means that every
G: (M,N) - Hom(G(M), G(N))

is indeed numerical of degree 7. O

17
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The following theorem should be compared with Theorem 3 above.

TueOREM 11. — The analytic functors are precisely the inductive limits of numerical
functors.

Proof. Step 1: Inductive limits of numerical, or even analytic, functors are analytic. Let
the functors F;, for i € I, be analytic. For any

a€ Homy(AQM,A®N),
we have
Fi(o): A®Fi(M) > AQ Fi(N).

Therefore
lim F(o): A @ limy F;(M) — A ® lim F(N),

since tensor products commute with inductive limits, which yields a map
lim F;: Homy (A ®@ M,A ® N) — Homy (A ® lim F;(M),A ® lim F;(N)),

establishing that lim F; is analytic.
Step 2: Analytic functors are inductive limits of locally numerical functors. Let F be
analytic. The maps

F: Homy (A ®@ M,A® N) - Homy (A ® F(M),A ® F(N))

are then multiplicative and natural in A. To shew F is the inductive limit of
locally numerical functors, it is sufficient to construct, for any given module
P and element # € F(P), a locally numerical subfunctor G of F, such that
u e G(P).

To this end, define G as in the lemma:

GM) = (F(a)(n)|a: P> M).

Clearly » € G(P). By the lemma, G is locally numerical, if only we can shew
that
Ey: Hom(P,M) — F(M)

is always numerical (of possibly unbounded degree).

We make use of the following fact. The module Hom(P,M) is finitely
generated and free, because P and M are. Let g, ..., ¢, be a basis.

Let s, ...,s; be free variables, and let

Aot

F()5®e) € Homa(4 ® F(P), A ® F(M)),

Since

18
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we may write
F(Ys®e) (u@u) = ); (;() ®vx € AQF(M)
for some 7, and hence
(D) =# (Ssw) 00 = 3 (3 )or

Since the ¢; generate Hom(P, M), it follows that &y is numerical of degree 7.
Step 3: Locally numerical functors are inductive limits of numerical functors. Let F
be locally numerical, and, given P and # € F(P), define G and ¢ as before. We
shall shew that G is numerical by shewing that & is numerical of some fixed
degree.
Let o;: P — M be homomorphisms, let

B:B(SI,...,sk>, C:B(SI,...,sk,t)

be free numerical rings, and consider the algebra homomorphism
1:B—C, s —ts;.

There is a commutative diagram:

B B® Hom(P,M) —~ B® Hom(F(P), F(M))
‘cl ’C®I\L l’t@l
C C ® Hom(P, M) — > C ® Hom(F(P), F(M))

As a consequence, we obtain, for any homomorphisms a;: P — M:

F(Qlsi®o;)

l

Zm@méFT¥WQE®%q

Ysi®o;

(Xsi®w)
Consider now
F: B(SI’ B )@Hom (P, M) — a ) ® Hom(E(P), F(M)),

and write

("
F(Ys@a) - ;( ) @b,

19
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for some homomorphisms Bx: F(P) — F(M).
Similarly, from contemplating

Fi8(" ) @Hom(r.) — B( ") o Hom (), F)),

we may write
t
Ft®1p) = Z <m> & Ym,
m<n

for some number 7 and homomorphisms y,,: F(P) — F(P). Observe that n is
fixed, and only depends on F.
We now have

Z <;> ®Bx = (t®1) (2 <;> ®BX> =(tQNF (2&'@%‘)

X X

(Ztsi(@(xl—) = F(Z%’@“i) F(t®1p)

S en) (20)e)

The right-hand side, and therefore also the left-hand side, is of degree 7 in ¢,
whence By = o when |X| > n.

Consequently,
(L) = F (Do) 0= 3 (5 )xto
1X|<n
and & is numerical of degree 7. O

§5. Tue FunpaMENTAL NUMERICAL FUNCTOR

In this section, we exhibit a projective generator of the category of numerical
functors.

Tueorem 12. — Let K be a fixed module. The functor B[Hom(K, —)],,, given by

M — B[Hom(K,M)],
Hom(K,M)], — B[Hom(K, N)]n]

1 N | ] Bl
[ M = N] o] > [xod]

is numerical of degree n.

2.0
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Proof. Since BlHom(K, —)], is the composition of B[—], with the Hom-func-
tor, it suffices to prove B[—], is of degree n. Let x;: M — N be homomorph-
isms, and let x € M; then

[0 o Xnal([x]) = [Xa(x) © - 0 A (x)] = 0.
Moreover, if € B and y: M — N, then

el = ) = 3 (5) [9x69] = 5 (5) [ 0] G

k=0 k=0
We infer that B[], is numerical of degree 7. O
Derinition 13. — The functor

B[Hom(B”, -)],

will be called the fundamental numerical functor of degree . o

§6. TaHe NUMERICAL YONEDA CORRESPONDENCE
TueoreM 13: THE NUMERICAL YONEDA Lemma. — Let K be a fixed module, and F
a numerical functor of degree n. The map
Y r: Nat (B[Hom(K, —)],, F) — F(K)
n — nx([1x])

is an isomorphism of modules.
The isomorphism is natural, in the sense that the following two diagrams commute:

Yk F

K Nat(B[Hom(K, —)],, F) — F(K)

Bl [ﬁ"]*i lF(B)
L

Nat(B[Hom(Z, —)],, F) ——= F(L)

YL F

Yk F

Nat(B[Hom(K, —)],, F) —— F(K)

i N e

Nat(B[Hom(K, —)], G) — G(K)

Yk,G

Proof. The proof is the usual one. Consider the following commutative dia-
gram:

K B[Hom(K,K)], —% F(K)  [1x] —— nx([1x])

21
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Upon inspection, we find that Yg ; has the inverse

NLE B[Hom(K,M)], — F(M)]
Y [a] — F(ar)(y) '

When defining this inverse, the numericality of F is used in an essential way
to ensure that the map

Hom(K,M) - Hom(F(K),F(M))

factor through B[Hom(K, M)],,.
The naturality of Y is obvious. O

In particular, putting F = B[Hom(X, —)],,, we obtain a module isomorph-
1sm
Nat(B[Hom(K, —)],) =~ B[Hom(K, K)], = B[End K],

given by the map
Y:n — ng([x])

with inverse

Y o] [[c*]: B[Hom(K, —)], — B[Hom(K, )]n] .

[] — [a0 o]

Recall from [10] (Definition g) that the augmentation algebras of the mod-
ule M are
B[M], = B[M]/I,,

where B[M] denotes the free algebra under the sum multiplication
[x1ly] = [x+ ]
and 7, denotes the ideal
L= ([xc0 - oxpqa] | xi €M)

(-2 ) [

o

reB,xeM), n=-—L

When M is itself an algebra, there will be a corresponding product multiplica-
tion on B[M]:
[x] * [y] =[xyl

which descends unto the augmentation algebras B[],,.
In the particular case given by the Yoneda correspondence above,

*

Y~ ([o] % [1]) = Y ([o7]) = [(o7) ]
= [t]o[o’] =Y '([x]) o Y ([o]).

The product multiplication is reversed by Y, and we may thus conclude:
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THEeOREM 14. — The Yoneda correspondence provides an isomorphism of rings
(NatB[Hom(K, —)],)° =~ B[End K],
where the former is equipped with composition, and the latter with the product multiplic-

ation.

§7. THE MoritAa EQUIVALENCE

We proceed to demonstrate the equivalence of 9um,, with a suitable module
category.

LemMa 2. — A polynomial functor of degree n that vanishes on B" is identically zero.

Proof. Suppose that F is polynomial of degree 7, and that F(B”) = o. We shall
shew that F(B?) = o for all natural numbers g.
Consider first the case ¢ < 7. Then B? is a direct summand of B”, so F(B?)
is a direct summand of F(B") = o.
Proceeding by induction, suppose F(B?™*) = o for some ¢ —1 > n. Decom-
pose
Igs = T+« + Ty,

where m;: B? — B? denotes the jth projection. Since F is polynomial of degree
n, and therefore of degree ¢ — 1,

o=F(mo---omy) = Z (-7 VIF (an).
Jeld) J

Consider a J with |J| < ¢ — 1. Since >}, n; factors through B7™", the homo-
morphism F (Z] n]) factors through F(B?™") = o. Only J = [¢] will give a

non-trivial contribution to the sum above, yielding
o= F(TCI + -+ th) = F(IBq) = If(B4)5
hence F(B?) = o. O

The next result was established by Pirashvili for polynomial functors in

[6].

Tueorem 15. — The fundamental numerical functor
B[Hom(B", )],
is a small projective generator for Mum,,, through which there is a Morita equivalence
Num,, ~ ppnxny, Mo,

where B[B"*"|,, carries the product multiplication.
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More precisely, the functor F corresponds to the abelian group F(B"), with module
structure given by the equation

Proof. Step 1: BlHom(B”, —)], is projective. We must shew that
Nat(B[Hom(B", —)],, —)

is right-exact, or preserves epimorphisms. Hence let n: F — G be epimorphic,
so that each ny is onto. The following diagram, constructed by aid of the
Yoneda Lemma, shews that n« is epimorphic:

Nat(B[Hom(B", —)],,, F) <= F(B")

nl lnm

Nat(B[Hom(B”, —)]», G) <<= G(B")

Step 2: BlHom(B”, —)],, is a generator. By the lemma,
o = Nat(B[Hom(B”, -)],, F) =~ F(B")

implies F = o.
Step 3: BlHom(B”, —)],, is small. Compute, using the Yoneda Lemma:

Nat (B[Hom(B", —)],, (D F) = (D F) (B") = (D F(B")
=~ (P Nat (B[Hom(B”, —)],, Fz).

Step 4: The Morita equivalence. As Mumy, is an abelian category with arbitrary
direct sums, there is a Morita equivalence:

Nat(B[Hom(B"”,—)],—)

T
Num,, sMNod

B[Hom(B",—)]»®s—
The new base ring is
§ = (NatB[Hom(B", -)],)" = B[End B"], = B[B"*"],,.
Plainly, the functor F corresponds to the abelian group
Nat(B[Hom(B”, —)],, F) =~ F(B").

Step 5: The module structure. Under the Yoneda map, an element x € F(B”)
will correspond to the natural transformation

nu: B[Hom(B",M)], — F(M)
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(o] — F(o) (x).
Likewise, a scalar [t] € B[B"*"], will correspond to
oy : B[Hom(B",M)], — B[Hom(B",M)],
[a] — [oo1].
The product of the scalar 6 and the module element n is the transformation
(> o) B[Hom(B", M)], — F(M)
[o] = Flaot)(x),

which under the Yoneda map corresponds to
(moo)pe([18r]) = F(1p 0 7)(x) = F(1)(x) € F(B").
The scalar multiplication on F(B”) is thus given by the formula
[{ - x = F@)(v),
and the proof is finished. O

§8. Tue DivipeEp POWER MaP

A key role in the theory of polynomial functors is played by the rings B[B”*"],
and I*(B"*"), in that their modules encode numerical and homogeneous func-
tors (of degree n), respectively. One manifest way of relating the two species
of functors will then be to exhibit homomorphisms between the respective
rings. This shall form the topic of the present section.

Let us begin with somewhat greater generality. Taking as our starting-
point a module M, we propose a study of the divided power map

Yu: M — T"(M)
x > x",

THEOREM 16. — The divided power map is numerical of degree n and therefore induces
a linear map

Yot B[M], — T (M)
[x] — x.
This is a natural transformation of (numerical) functors.

Proof. Since v, is homogeneous of degree 7, it is also numerical of the same
degree. O

LemMA 3. — Ifxy,...,x, € M, then

(XIQ...an)["] =X Xy
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Proof. By the definition of deviations,

7]
(xr 0 ox,)lM = Z (=)W (le) .

1=[n] iel
A given monomial xX] will occur in those terms for which #X < I. Its
coéfhicient will be
e
#XCIC([n]
which is 1 if #X = [n] and o otherwise. O

THeOREM 17. — Let M be finitely generated and free. The co-kernel of the homomorph-
ism
(m,7,): B[M], — B[M],—, ®T"(M)
is
Coker(n,y,) = T"(M)/ {3y -+ xn | x; € M).

In particular, (n,Y,) is an injection of finite index.

Proof. Let {ey, ..., e} be a basis for M. Then the elements
[fro-ofmls fie{en. .. e},

for o < m < n, constitute a basis for B[M],. The image of (x,v,) is generated
by the images

(T, ¥)([fr o o fm]) = ([ﬂ<>~-~<>fm],[/§<>~-~<>fm][”]), o< m<m

and

mw) (oo fil) = (o (ho- o f)) = (0fi-+-fo).
The relations
o ofn]l=—If <>"'<>fm]["] mod Im(x,y,)

permit the representation of each element of the co-kernel by a sum of divided
nth powers, while the relations

fi++fn =0 modIm(,v,)
yield the desired factor module of T (M). O
THEOREM 18. — Let M be finitely generated and free. The kernel of the homomorphism
Yo: B[M], — T"(M)

s
Kery, = Q®z {[rz] —r*|z] | r € B, ze M) n B[M],,.
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Proof. Let {ey,...,e} be a basis for M. Then, as m ranges from o to n, the

elements
I:}(;O"'Ofm], ﬁe{eI!"'se/e}a

will constitute a basis for B[M],,.
Denote
L=Q®z{[rz] —r"|z]|reB,ze M);

then evidently
L nB[M], < Kery,.

We now shew the reverse inclusion.
Calculating modulo L, we have, for any z,

[gz] Ig[;n](ﬂm” lZZ] = 2 (=77 <7:Z) [rz]

icl r=o
= 2(_1)’”—7 (’f) [2] = m!{;}[ZL ()

where {”} denotes a Stirling number of the second kind.
We may then write

“fror1-) g [34

el

= >, (- ! ngﬁ} =&+,
I1<[m]

el

where & is a sum of mth deviations, and & collects the higher-order deviations.
We calculate &:

- xorn s ()ad]

1€[m] #ACT
|A|l=m

g e (G]RE

#A<[m] (#Agg[m] A) laca

(Iﬁ,l)[ﬂv-«#m] =mllfio-ofl.

|
H
h S
I g
3,
VRS
=
N———
e
b
TS
| I
I

We thus have

m!{:;}[ﬂo---ofm] = milfio- o fpn] +& modL,
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and, consequently, provided 1 < m < (so that {} > 1),

[ﬂ0-~-ofm]57m!({£}ﬂ) ¢ modL.

Now suppose o € Kery,. Using the above relation, together with
[6] = [o] = 0 modL
and
of = 1 [o1 = ooy [ 0F | = 51 |97 mod.

which are both consequences of (1); we may express o as a (fractional) linear
combination of nth deviations of the basis elements ¢;:

o=

cA [ O eﬂ] mod L.
#AC[k] acA
|A|=n

Apply vy:
o :Yn(w) = Z CAYn(?Aea> = Z CAeA'

#AC[k] #AC[k]
|Al=n |Al=n

Because the elements el] constitute a basis for I”*(M), it must be that all coéf-
ficients ¢4 = o, and hence o € L. The proof is finished. O

Due to lack of torsion in the base ring, the divided power map may always
be extended to a map

To: Q®z B[M], — Q@7 I (M).

This map (almost trivially) possesses an inverse. We shall, however, be inter-
ested in obtaining an inverse under a slightly less generous localisation.

TueOREM 19. — The homomorphism
&,: T"(M) - Q®z B[M],

(a1, !
¥ degA [ﬁ? x]

constitutes a section of the divided power map:

Yn€n = Irn(M)-
This leads to a direct sum decomposition:

Ime, =T"(M) ® (Kery, nIme,).
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Proof. The relation v,e, = 1 is immediate, and then the following exact se-
quence splits:

Tn
o——>Kery, nIme, ——=Ime, - 7T"(M) ——o0
€n

O

It will now be appropriate to specialise the preceding discussion to the
particular rings B[B”*"], and I'""(B”*”). Recall that both rings are equipped
with a product multiplication, given by the laws

(o] « [B] = [oB], ol Bl = (o).
TueoreM 20. — The maps
Yo B[ann]n N Fn(ann), €yt Fn(ann) - Q®y B[ann]n

are homomorphisms of algebras, when both rings are equipped with the product multi-
plication.

Proof. Calculate:
Ya([e) * 1 ([B]) = o) BV = (0B)0") = v, ([0B]) = v([e] * [B])-

To shew ¢, preserves multiplication, it will be enough to consider pure
powers al”l and Bl”l. The relation

[<n>a] . [<n> B] ! [2043]

is readily verified, by means of simple algebraical manipulations.” We may
then compute:

sAdm*%wW>=I[04*[g@

Finally, let us put forth the module-theoretic equivalent of quasi-homo-
geneity.

THEOREM 21. — Let F be a numerical functor, corresponding to the B[B"*"|,-module
M. The functor F is quasi-homogeneous of degree n if and only if M is a module over

Imvy, = B[B"*"],/Kervy,.

3Compare the Deviation Formula, Theorem 7.1, in [9].
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Proof. Recall that the scalar multiplication of B[B”*”], on M = F(B") is given

by
[c]x = F(o)(x), o€ B"™", xe F(B").

The requirement that Kery, annihilate F(B”) is equivalent to demanding that
F itself vanish on

Kery, = Q®z ([ro] — r"[o]|r € B, 6 € B”*") n B[B"*"],,

which would clearly be a consequence of quasi-homogeneity.
To shew that, conversely, quasi-homogeneity is implied by the equation

F(ro) = "F(o), o©e€B™",

we first shew that
F(r-1pqs) = "F(1pq)

for all natural numbers g. This is clear when g < n, for then 1g¢ factors through
1g». When g > n, split up into the canonical projections, and use induction:

F(r-1ps) = F(ray + -+~ + rmy)

=— Z (—0)7MIF (Z rni)
Ic[q]

el
=— Z (—0)7~ My F (2 nl-)
I=]q] iel

=7"F(n; + -+ +my) = r"F(1pa).
Finally, for an arbitrary homomorphism o: B — B?, we have

F(ra) = F(r - 1ge)F(a) = " F(1ps)F(at) = r"F(a).

§9. RESTRICTION AND EXTENSION OF SCALARS
The divided power map
’Yn: B[anﬂ]n N Fn(ann)

gives rise to two natural functors between the corresponding module categor-
1es, viz. restriction and extension of scalars. We consider them in turn.
Restriction of scalars is the functor

rn(ann)mtﬁb - B[ann]nDﬁOD,

which takes a T”(B”*”)-module M and views it as a B[B”*"],-module under
the multiplication

[o]x = Ya(0)x = ox.
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On the functorial level, this corresponds to the forgetful functor
Hom,, — NNum,,.
Extension of scalars is the functor
B[Bx7], 00 — 1 (grxny MO0,
which takes a B[B”*"],-module M and transforms it into a I*(B”*”)-module
I"(B""") @ggrxny, M

through the tensor product.
Let us examine its action on the functorial level. To this end, denote by

P = B[Hom(B",—)],
Q =1"Hom(B", —)

the projective generators of the categories 9tum,, and $Hom,, respectively. A
functor F € 9um,, will then correspond to the B[B”*”],,-module

M = Nat(P, F).
Extension of scalars transforms it into the I”?(B”*”)-module
N = I"(B"*") @gqgusny, M = T (B"") @gypnn), Nat(P, F),
which corresponds to the homogeneous functor

G = Q®n(prxny N
= Q ®pn(gnxny [ (B"*") ®pgnxn}, Nat(P, F)
= Q ®p[rxn], Nat(P, F).
This tensor product is interpreted in the usual way. By definition,
P — Q®gnxn), Nat(P, P)
= Q ®gprx»], BB, = Q,

and then extension is performed by means of direct sums and right-exactness.
We summarise in a theorem.

Tueorem 22. — Consider the divided power map
i BB"], — [(B"")
e Restriction of scalars
7 (Brxn) IMOD — prpnxny, Mod
corresponds to the forgetful functor

Hom,, — Num,,.
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e Extension of scalars
B[ann]nmﬂa d rn(ann)mﬂa

corresponds to the functor
Num,, — Hom,,

which maps
B[Hom(B”,-)], — I Hom(B", —),

extended by divect sums and right-exactness.

§10. NUMERICAL VERSUS STRICT PorLyNomiIaL FUNCTORS

Lastly, we present one half of the Polynomial Functor Theorem, Theorem 11.3
of [g], recording a necessary and sufficient condition for a numerical functor to
be strict polynomial. (Whereas the present condition is stated in terms of the
description of functors as modules, the other half proposes a combinatorial
criterion.)

Tueorem 23: THE PoLynomiaL Funcror TuEorREM. — Let F be a quasi-homogene-
ous functor of degree n, corresponding to the B[B"*"),-module M and the Im y,-module
N. The following constructs are equivalent:

A. Imposing the structure of homogeneous functor, of degree n, upon F.
B. Giving M the structure of Im €,-module.

C. Giving N the structure of I (B"*")-module.

Proof. The equivalence of A and C is immediate. From the isomorphism
Ime, =~ T*(B"*”) x (Kery, n Img,),

we conclude that I (B”*”)-modules canonically correspond to Ime,-modules,
and vice versa. (The ring Kery, n Ime, corresponds to subfunctors of lower
degree. By considering quasi-homogeneous functors only, modules over this
ring will be zero.) This demonstrates the equivalence of B and C. O

Once again, we caution the reader that, even in the case M may be con-
sidered an Ime,-module, this module structure will not be unique. There
are in general many strict polynomial structures on the same functor, even of
different degrees.

ExampLe 7. — In the affine case (degree o and 1), numerical and strict polyno-
mial functors coincide. This is no longer the case in higher degrees. Already
in the quadratic case, there exist numerical functors which do not admit a
strict polynomial structure.
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Yet, some concordance will be retained in the quadratic case, in that any
quasi-homogeneons functor may be given a unique strict polynomial structure,
which makes it homogeneous of degree 2. This stems from the map

,YZ: B[BZXZ]Z — FZ(BZXZ)
being onto, so that there is, in fact, a split exact sequence

Y2
o — Kery, —— B[B***], = I'*(B***) ——=o
1)
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